Упражнение 1161 - ГДЗ Алгебра 8 класс. Макарычев, Миндюк. Учебник. Страница 259

Старая и новая редакции

Вернуться к содержанию учебника

1158 1159 1160 1161 1162 1163 1164

Вопрос

№1161 учебника 2023-2025 (стр. 259):

Дана функция \( g(x) = 1 - \sqrt{x} \). Расположите в порядке возрастания значения этой функции при: \( x = 0; \, x = 1; \, x = 0{,}25; \, x = 0{,}09; \, x = 36. \)

Подсказка

Ответ

№1161 учебника 2023-2025 (стр. 259):

\( g(x) = 1 - \sqrt{x} \)

При \(x = 0:\)

\( g(0) = 1 - \sqrt{0} = 1. \)

При \(x = 0{,}09:\)

\( g(0{,}09) = 1 - \sqrt{0{,}09} =\)

\(=1 - 0{,}3 = 0{,}7. \)

При \(x = 0{,}25:\)

\( g(0{,}25) = 1 - \sqrt{0{,}25} =\)

\(1 - 0{,}5 = 0{,}5. \)

При \(x = 1:\)

\( g(1) = 1 - \sqrt{1} = 1 - 1 = 0. \)

При \(x = 36:\)

\( g(36) = 1 - \sqrt{36} = 1 - 6 = -5. \)

\( -5 < 0 < 0{,}5 < 0{,}7 < 1. \)

Ответ: \( g(36),\; g(1),\; g(0{,}25),\; g(0{,}09),\; g(0). \)


Пояснения:

Функция \(g(x) = 1 - \sqrt{x}\) — это убывающая функция, так как с увеличением \(x\) величина \(\sqrt{x}\) растёт, а значит значение \(1 - \sqrt{x}\) уменьшается.

Поэтому чем больше \(x\), тем меньше \(g(x)\). Порядок значений \(g(x)\) противоположен порядку значений \(x\).


Вернуться к содержанию учебника