Вернуться к содержанию учебника
Из некоторого пункта вышли одновременно два отряда. Один направился на север, а другой — на восток. Спустя 4 ч расстояние между отрядами было равно 24 км, причём первый отряд прошёл на 4,8 км больше, чем второй. С какой скоростью шёл каждый отряд?
Вспомните:
Пусть скорость первого отряда \(x\) км/ч, а скорость второго — \(y\) км/ч (\(x>0\) и \(y > 0\)).

За 4 часа первый отряд прошёл \(4x\) км, второй — \(4y\) км, тогда согласно условию
\( 4x - 4y = 4{,}8. \)
А по теореме Пифагора:
\[ (4x)^2 + (4y)^2 = 24^2. \]
Составим систему уравнений:
\[ \begin{cases} 4x - 4y = 4{,}8, / : 4 \\ (4x)^2 + (4y)^2 = 24^2 \end{cases} \]
\[ \begin{cases} x - y = 1,2, \\ 16x^2 + 16y^2 = 576 / : 16 \end{cases} \]
\[ \begin{cases} x - y = 1,2, \\ x^2 + y^2 = 36 \end{cases} \]
\[ \begin{cases} x = 1,2 + y, \\ (1,2 + y)^2 + y^2 = 36 \end{cases} \]
\[ (y + 1{,}2)^2 + y^2 = 36 \]
\[ y^2 + 2{,}4y + 1{,}44 + y^2 - 36 = 0 \]
\( 2y^2 + 2{,}4y - 34{,}56 = 0 \) \(/ : 2\)
\[ y^2 + 1{,}2y - 17{,}28 = 0\]
\( D = 1,2^2 - 4\cdot1\cdot(-17,28) =\)
\(=1{,}44 + 69{,}12 = 70{,}56 > 0 \) - 2 корня.
\(\sqrt{70{,}56} = 8{,}4. \)
\( y_1 = \frac{-1{,}2 + 8{,}4}{2\cdot1} = \frac{7,2}{2} = 3{,}6\).
\( y_2 = \frac{-1{,}2 - 8{,}4}{2\cdot1} = \frac{-9,6}{2}= -4,8\) - не удовлетворяет условию.
Если \(y = 3,6\), то
\[ x = 3{,}6 + 1{,}2 = 4{,}8. \]
Ответ: первый отряд шёл со скоростью \(4{,}8\) км/ч, второй — со скоростью \(3{,}6\) км/ч.
Пояснения:
Используемые правила и формулы:
1. Формула пути: \(s = vt\).
2. Если движение происходит по перпендикулярным направлениям, расстояние между объектами находится по теореме Пифагора:
\[ a^2 + b^2 = c^2, \]
где \(a\) и \(b\) - катеты прямоугольного треугольника, \(c\) - его гипотенуза.
3. Систему уравнений с двумя переменными удобно решать методом подстановки. Подстановка приводит к квадратному уравнению.
4. Квадратное уравнение
\(ax^2 + bx + c = 0\) решается через дискриминант \(D = b^2 - 4ac\). Если \(D > 0\), то уравнение имеет 2 корня:
\(x_{1,2} = \frac{-b \pm\sqrt D}{2a}\).
Подробное объяснение:
Сначала выразили пути отрядов через их скорости и время движения. Разность пройденных расстояний дала первое уравнение системы.
Так как отряды шли на север и восток, угол между направлениями равен \(90^\circ\), поэтому расстояние между ними через 4 часа находится по теореме Пифагора.
Решив полученную систему, нашли скорости каждого отряда. При этом, учли то, что скорость не может быть отрицательной.
Вернуться к содержанию учебника