Вернуться к содержанию учебника
Разность квадратов двух чисел равна 100. Если из утроенного первого числа вычесть удвоенное второе число, то получится 30. Найдите эти числа.
Вспомните:
Пусть \(x\) и \(y\) - искомые числа.
Составим систему уравнений:
\(\begin{cases} x^2-y^2=100,\\ 3x-2y=30 \end{cases}\)
\(\begin{cases} x^2-y^2=100,\\ 2y=3x-30 / : 2 \end{cases}\)
\(\begin{cases} x^2-(1,5x-15)^2=100,\\ y=1,5x-15 \end{cases}\)
\(x^2-(1,5x-15)^2=100\)
\(x^2 -(2,25x^2 -45x + 225) - 100 = 0\)
\(x^2 -2,25x^2 +45x - 225 - 100 = 0\)
\(-1,25x^2 + 45x - 325 = 0\) \(/\times(-4)\)
\(5x^2 - 180x + 1300 = 0\) \(/ : 5\)
\(x^2 - 36x + 260 = 0\)
\(D = (-36)^2 - 4\cdot1\cdot260 =\)
\(=1296 - 1040 = 256 > 0\) - два корня.
\(\sqrt{256} = 16\).
\(x_1 =\frac{36 + 16}{2\cdot1}=\frac{52}{2} = 26\).
\(x_2 =\frac{36 - 16}{2\cdot1}=\frac{20}{2} = 10\).
Если \(x=26\), то
\(y=1,5\cdot26-15 = 39 - 15 =24\).
Если \(x=10\), то
\(y=1,5\cdot10-15 = 15 - 15 =0\).
Ответ: \(26\) и \(24\) или \(10\) и \(0\).
Пояснения:
Введём обозначения, так как задача текстовая: \(x\) — первое число, \(y\) — второе число. Это позволяет записать условия задачи в виде уравнений. Из которых составляем систему и решаем методом подстановки: из одного уравнения системы выражается одна переменная и подставляется в другое уравнение.
Квадратное уравнение
\(ax^2 + bx + c = 0\),
решаем с помощью дискриминанта \(D = b^2 - 4ac\).
Если \(D> 0\), то уравнение имеет два корня:
\(x_{1,2} = \frac{-b \pm \sqrt D}{2a}\).
После нахождения возможных значений \(x\) каждое из них подставляется обратно для вычисления \(y\). Обе найденные пары чисел удовлетворяют условиям задачи.
Вернуться к содержанию учебника