Вернуться к содержанию учебника
Выберите год учебника
№797 учебника 2023-2025 (стр. 179):
Выполните действие:
а) \(\dfrac{x+4}{x-1} - \dfrac{37x-12}{4x^2 - 3x - 1}\);
б) \(\dfrac{x-1}{x+2} - \dfrac{1-x}{x^2+3x+2}\);
в) \(\dfrac{7x-x^2}{x+4} \cdot \dfrac{x^2-x-20}{7-x}\);
г) \(\dfrac{x^2+11x+30}{3x-15} : \dfrac{x+5}{x-5}\);
д) \(\dfrac{2x^2-7}{x^2-3x-4} - \dfrac{x+1}{x-4}\);
е) \(\dfrac{2+x-x^2}{2-5x+3x^2} + \dfrac{10x}{3x-2}\).
№797 учебника 2013-2022 (стр. 178):
Докажите неравенство:
а) \(6a(a+1) < (3a+1)(2a+1) + a\);
б) \((2p-1)(2p+1) + 3(p+1) > (4p+3)p\).
№797 учебника 2023-2025 (стр. 179):
Вспомните:
№797 учебника 2013-2022 (стр. 178):
Вспомните:
№797 учебника 2023-2025 (стр. 179):
а) \(\dfrac{x+4}{x-1} - \dfrac{37x-12}{4x^2 - 3x - 1}=\)
\(=\dfrac{x+4}{x-1} ^{\color{blue}{\backslash 4x+1}} - \dfrac{37x-12}{(4x+ 1)(x-1)}=\)
\(=\dfrac{(x+4)(4x+1)-(37x-12)}{(4x+ 1)(x-1)}=\)
\(=\dfrac{4x^2+x+16x+4-37x+12}{(4x+ 1)(x-1)}=\)
\(=\dfrac{4x^2-20x+16}{(4x+ 1)(x-1)}=\)
\(=\dfrac{4(x^2-5x+4)}{(4x+ 1)(x-1)}=\)
\(=\dfrac{4(x-4)\cancel{(x-1}))}{(4x+ 1)\cancel{(x-1)}}=\)
\(=\dfrac{4(x-4)}{4x+ 1}=\dfrac{4x-16}{4x+ 1}\)
1) \(4x^2 - 3x - 1 = 0\)
\(a = 4\), \(b = -3\), \(c = -1\)
\(D = b^2 - 4ac = (-3)^2 - 4\cdot4\cdot(-1)=\)
\(=9 + 16 = 25\), \(\sqrt D = 5\).
\(x_1 = \frac{-(-3) + 5}{2\cdot4} = \frac88 = 1\).
\(x_2 = \frac{-(-3) - 5}{2\cdot4} = \frac{-2}{8} = -\frac14\).
\(4x^2 - 3x - 1 = 4(x - 1)(x + \frac14)=\)
\( = (4x + 1) (x - 1)\).
2) \(x^2-5x+4 = 0\)
\(a = 1\), \(b = -5\), \(c = 4\)
\(D = b^2 - 4ac = (-5)^2 - 4\cdot1\cdot4 =\)
\(=25 - 16 = 9\), \(\sqrt 9 = 3\).
\(x_1 = \frac{-(-5) + 3}{2\cdot1} = \frac82 = 4\).
\(x_2 = \frac{-(-5) - 3}{2\cdot1} = \frac22 = 1\).
\(x^2-5x+4 = (x-4)(x - 1)\).
Ответ: \(\dfrac{4x-16}{4x+ 1}\).
б) \(\dfrac{x-1}{x+2} - \dfrac{1-x}{x^2+3x+2}=\)
\(=\dfrac{x-1}{x+2} ^{\color{blue}{\backslash x+1}} - \dfrac{1-x}{(x+1)(x+2)}=\)
\(=\dfrac{(x-1)(x+1) - (1 - x)}{(x+2)(x+1)}=\)
\(=\dfrac{x^2 - 1 -1 + x}{(x+2)(x+1)}=\)
\(=\dfrac{x^2+x-2}{(x+2)(x+1)}=\)
\(=\dfrac{\cancel{(x+2)}(x-1)}{\cancel{(x+2)}(x+1)}=\dfrac{x-1}{x+1}\)
1) \(x^2+3x+2 = 0\)
\(a = 1\), \(b = 3\), \(c = 2\).
\(D = b^2 - 4ac=3^2 - 4\cdot1\cdot2 =\)
\(=9 - 8 = 1\), \(\sqrt D = 1\).
\(x_1 = \frac{-3 + 1}{2\cdot1} = \frac{-2}{2}=-1\).
\(x_2 = \frac{-3 - 1}{2\cdot2} = \frac{-4}{2}=-2\).
2) \(x^2+x-2 = 0\)
\(a = 1\), \(b = 1\), \(c = -2\)
\(D = b^2 - 4ac = 1^2 - 4\cdot1\cdot(-2)=\)
\(=1 + 8 = 9\), \(\sqrt D = 3\).
\(x_1 = \frac{-1 + 3}{2\cdot1} = \frac{2}{2} = 1\).
\(x_2 = \frac{-1 - 3}{2\cdot1} = \frac{-4}{2} = -2\).
\(x^2+x-2 = (x-1)(x+2)\).
Ответ: \(\dfrac{x-1}{x+1}\).
в) \(\dfrac{7x-x^2}{x+4} \cdot \dfrac{x^2-x-20}{7-x}=\)
\(= \frac{x\cancel{(7-x)}}{\cancel{x+4}}\cdot \frac{(x-5)\cancel{(x+4)}}{\cancel{7-x}} =\)
\(= x(x-5) = x^2 - 5x\).
\(x^2-x-20 = 0\)
\(a = 1\), \(b = -1\), \(c = -20\)
\(D = b^2 - 4ac =\)
\(=(-1)^2 - 4\cdot1\cdot(-20)=\)
\(=1 + 80 = 81\), \(\sqrt D = 9\).
\(x_1 = \frac{-(-1) + 9}{2\cdot1} = \frac{10}{2} = 5\).
\(x_2 = \frac{-(-1) - 9}{2\cdot1} = \frac{-8}{2} = -4\).
\(x^2-x-20 = (x - 5)(x + 4)\)
Ответ: \(x^2 - 5x\).
г) \(\dfrac{x^2+11x+30}{3x-15} : \dfrac{x+5}{x-5}=\)
\(=\dfrac{\cancel{(x + 5)}(x + 6)}{3\cancel{(x-5)}} \cdot \dfrac{\cancel{x-5}}{\cancel{x+5}}=\)
\(=\frac{x + 6}{3}\).
\(x^2+11x+30=0\)
\(a=1\), \(b = 11\), \(c = 30\)
\(D = b^2 - 4ac =11^2 - 4\cdot1\cdot30 =\)
\( = 121 - 120 = 1\), \(\sqrt D = 1\).
\(x_1 = \frac{-11 + 1}{2\cdot1} = \frac{-10}{2} = -5\).
\(x_2 = \frac{-11 - 1}{2\cdot1} = \frac{-12}{2} = -6\).
\(x^2+11x+30=(x + 5)(x + 6)\)
Ответ: \(\frac{x + 6}{3}\).
д) \(\dfrac{2x^2-7}{x^2-3x-4} - \dfrac{x+1}{x-4}=\)
\(=\dfrac{2x^2-7}{(x-4)(x+1)} - \dfrac{x+1}{x-4} ^{\color{blue}{\backslash x+1}} =\)
\(=\dfrac{(2x^2-7)-(x+1)^2}{(x-4)(x+1)}=\)
\(=\dfrac{2x^2-7-(x^2+2x+1)}{(x-4)(x+1)}=\)
\(=\dfrac{2x^2-7-x^2-2x-1}{(x-4)(x+1)}=\)
\(=\dfrac{x^2-2x-8}{(x-4)(x+1)}=\)
\(=\dfrac{\cancel{(x-4)}(x+2)}{\cancel{(x-4)}(x+1)}=\dfrac{x+2}{x+1}\)
1) \(x^2-3x-4=0\)
\(a = 1\), \(b = -3\), \(c=-4\)
\(D = b^2 - 4ac =\)
\(=(-3)^2 - 4\cdot1\cdot(-4)=\)
\(=9 + 16 = 25\), \(\sqrt D = 5\).
\(x_1 = \frac{-(-3) + 5}{2\cdot1} = \frac{8}{2} = 4\).
\(x_2 = \frac{-(-3) - 5}{2\cdot1} = \frac{-2}{2} = -1\).
2) \(x^2-2x-8 = 0\)
\(a = 1\), \(b = -2\), \(c=-8\)
\(D = b^2 - 4ac =\)
\(=(-2)^2-4\cdot1\cdot(-8) =\)
\(=4 + 32 = 36\), \(\sqrt D = 6\)
\(x_1 = \frac{-(-2) + 6}{2\cdot1} = \frac{8}{2} = 4\).
\(x_2 = \frac{-(-2) - 6}{2\cdot1} = \frac{-4}{2} = -2\).
\(x^2-2x-8 = (x-4)(x+2)\)
Ответ: \(\dfrac{x+2}{x+1}\).
е) \(\dfrac{2+x-x^2}{2-5x+3x^2} + \dfrac{10x}{3x-2}=\)
\(=\dfrac{2+x-x^2}{(3x-2)(x-1)} + \dfrac{10x}{3x-2} ^{\color{blue}{\backslash x-1}} =\)
\(=\dfrac{(2+x-x^2)+10x(x-1)}{(3x-2)(x-1)} =\)
\(=\dfrac{2+x-x^2+10x^2-10x}{(3x-2)(x-1)} =\)
\(=\dfrac{9x^2-9x+2}{(3x-2)(x-1)} =\)
\(=\dfrac{\cancel{(3x-2)}(3x-1)}{\cancel{(3x-2)}(x-1)} =\dfrac{3x-1}{x-1}\)
1) \(3x^2-5x+2=0\)
\(a = 3\), \(b = -5\), \(c=2\)
\(D = b^2 - 4ac =(-5)^2-4\cdot3\cdot2 =\)
\(=25-24=1\), \(\sqrt D =1\).
\(x_1 = \frac{-(-5) + 1}{2\cdot3} = \frac{6}{6} = 1\).
\(x_2 = \frac{-(-5) - 1}{2\cdot3} = \frac{4}{6} = \frac23\).
\(3x^2-5x+2=3(x-1)(x-\frac23)=\)
\(=(3x-2)(x-1)\)
2) \(9x^2-9x+2=0\)
\(a = 9\), \(b = -9\), \(c=2\)
\(D = b^2 - 4ac =(-9)^3 - 4\cdot9\cdot2=\)
\(=81 - 72 =9\), \(\sqrt D = 3\).
\(x_1 = \frac{-(-9) + 3}{2\cdot9} = \frac{12}{18} = \frac23\).
\(x_2 = \frac{-(-9) - 3}{2\cdot9} = \frac{6}{18} = \frac13\).
\(9x^2-9x+2=9(x - \frac23)(x - \frac13)=\)
\(=(3x-2)(3x-1)\)
Ответ: \(\dfrac{3x-1}{x-1}\).
Пояснения:
Чтобы сложить или вычесть рациональные дроби с разными знаменателями, нужно сначала привести эти дроби к общему знаменателю, после чего воспользоваться правилами сложения или вычитания рациональных дробей с одинаковыми знаменателями, то есть сложить или вычесть числители дробей, а знаменатель оставить тем же. При приведении дробей к общему знаменателю, сначала, если возможно, раскладываем знаменатели на множители, используя следующие приемы:
- вынесение общего множителя за скобки:
\(ka\pm kb = k(a\pm b)\);
- разложение квадратного трехчлена \(ax^2 + bx + c\) на множители по его корням \(x_1\) и \(x_2\):
\(ax^2 + bx + c = a(x - x_1)(x-x_2)\).
Корни квадратного трехчлена на множители находим через дискриминант \(D = b^2 - 4ac\), учитывая то, что при \(D>0\) квадратный трехчлен имеет два корня:
\(x_{1,2} = \frac{-b+\sqrt D}{2a}\).
Чтобы перемножить рациональные дроби, перемножаем числители этих дробей и перемножаем знаменатели, при этом перед умножением, если возможно, выполняем сокращение, предварительно разложив числители и знаменатели этих дробей на множители.
Частным двух рациональных дробей является рациональная дробь, числитель которой равен произведению числителя делимого и знаменателя делителя, а знаменатель - произведению знаменателя делимого и числителя делителя, при этом также если возможно выполняем сокращение.
№797 учебника 2013-2022 (стр. 178):
а) \(6a(a+1) < (3a+1)(2a+1) + a\)
\(6a(a+1) - ((3a+1)(2a+1) + a)=\)
\(=6a^2+6a - (3a+1)(2a+1) - a=\)
\(=6a^2+6a - (6a^2+3a+2a+1) - a=\)
\(=6a^2+6a - 6a^2-3a-2a-1 - a=\)
\(= -1 < 0\) - верно.
б) \((2p-1)(2p+1) + 3(p+1) > (4p+3)p\)
\((2p-1)(2p+1) + 3(p+1) - (4p+3)p=\)
\(=4p^2 - 1 + 3p+3 -4p^2 - 3p =\)
\(=2 >0\) - верно.
Пояснения:
Чтобы выполнить доказательство, мы находили разность левой и правой частей неравенства, а затем учитывали, то что:
1. Если \(a - b < 0\), то \(a < b\).
2. Если \(a - b > 0\), то \(a > b\).
Приемы, используемые при преобразованиях:
- умножение многочлена на многочлен:
\[ (x+y)(m+n) = xm + xn + ym + yn; \]
- умножение одночлена на многочлен:
\(a(b \pm c) = ab \pm ac;\)
- разность квадратов двух выражений:
\((a - b)(a + b) = a^2 - b^2;\)
- раскрытие скобок:
\(-(a - b) = -a + b;\)
- свойство степени:
\((ab)^n = a^nb^n.\)
Вернуться к содержанию учебника