Упражнение 575 - ГДЗ Алгебра 9 класс. Макарычев, Миндюк. Учебник. Страница 165

Вернуться к содержанию учебника

572 573 574 575 576 577 578

Вопрос

Найдите сумму:

а) всех натуральных чисел, не превосходящих 150;

б) всех натуральных чисел от 20 до 120 включительно;

в) всех натуральных чисел, кратных 4 и не превосходящих 300;

г) всех натуральных чисел, кратных 7 и не превосходящих 130.

Подсказка

Ответ

а) \(1+2+3+\ldots+150\)

\(S_n=\dfrac{(x_1+x_n)n}{2}\)

\(n = 150\),

\(a_1 = 1\),  \(a_{150} = 150\)

\(S_{150}=\dfrac{(1+150)\cdot\cancel{150}  ^{\color{blue}{75}} }{\cancel2}=\)

\(=75\cdot151=11\,325\)

Ответ: \(S_{150}=11\,325\).

б) \(20+21+22+\ldots+120\)

\(S_n=\dfrac{(x_1+x_n)n}{2}\)

\(n=120-20+1=101\),

\(a_1 = 20\),  \(a_{101} = 120\)

\(S_{101}=\dfrac{(20+120)\cdot101}{2}\)

\(=\dfrac{ ^{\color{blue}{70}} \cancel{140}\cdot101}{\cancel2}=70\cdot101=7070\).

Ответ: \(S_{101}=7070\).

в) \(4+8+12+\ldots+300\)

\(S_n=\dfrac{(x_1+x_n)n}{2}\)

\(n=\dfrac{300}{4}=75\),

\(a_1 = 4\),  \(a_{75} = 300\).

\(S_{75}=\dfrac{(4+300)\cdot75}{2}=\)

\(=\dfrac{ ^{\color{blue}{152}} \cancel{304}\cdot75}{\cancel2}=152\cdot75=11\,400\).

Ответ: \(S_{75}=11\,400\).

г) \(7+14+21+\ldots+126\)

\(S_n=\dfrac{(x_1+x_n)n}{2}\)

\(7\cdot18=126 < 130\),

\(7\cdot19=133 > 130\)

\(n=18\),

\(a_1 = 7\),  \(a_{18} = 126\)

\(S_{18}=\dfrac{(7+126)\cdot\cancel{18}  ^{\color{blue}{9}} }{\cancel2}=\)

\(=133\cdot9=1197\)

Ответ: \(S_{18} = 1197\).


Пояснения:

Во всех пунктах суммы являются суммами арифметических прогрессий, поэтому используется формула суммы первых \(n\) членов:

\[S_n=\dfrac{(a_1+a_n)n}{2}.\]

а) Натуральные числа от 1 до 150 образуют прогрессию с \(a_1=1\), \(a_{150}=150\), \(n=150\).

б) Числа от 20 до 120 также образуют арифметическую прогрессию, где \(a_1=20\), \(a_n=120\), число членов находится как разность концов плюс 1.

в) Кратные 4 числа до 300: \(4,8,12,\ldots,300\). Это прогрессия с разностью 4. Количество членов равно \(\frac{300}{4} = 75\), так как 300 — кратно 4.

г) Кратные 7 числа до 130: \(7,14,\ldots\). Последний член — наибольшее кратное 7, не превосходящее 130, это 126. Количество членов равно \(\frac{126}{7}=18\).


Вернуться к содержанию учебника