Вернуться к содержанию учебника
(Для работы в парах.) Ежегодный доход по вкладу «Юбилейный» составляет 6%. Первоначальный вклад был равен 80 000 р. Какая сумма будет на счёту у вкладчика:
а) через 4 года;
б) через 6 лет?
1) Обсудите, с какой последовательностью мы имеем дело в этой задаче.
2) Распределите, кто выполняет задание а), а кто - задание б), и выполните расчеты, используя калькулятор.
3) Проверьте друг у друга, правильно ли выполнены задания, и исправьте ошибки, если они допущены.
Введите текст
а) \(b_1 = 80000,\ q = 1{,}06\).
\(b_5 = b_1\cdot q^{5-1}\).
\(b_5 = 80000\cdot(1{,}06)^4\).
\(b_5 = 80000\cdot1{,}26247696 = 100998{,}1568\).
\(b_5 \approx 100998\).
б) \(b_7 = b_1\cdot q^{7-1}\).
\(b_7 = 80000\cdot(1{,}06)^6\).
\(b_7 = 80000\cdot1{,}418519 = 113481{,}52\).
\(b_7 \approx 113482\).
Пояснения:
В задаче используется геометрическая прогрессия, так как каждый год сумма вклада увеличивается в одинаковое число раз.
Если ежегодный доход составляет 6%, это означает, что каждый следующий год сумма на счёте умножается на коэффициент:
\[ q = 1 + \frac{6}{100} = 1{,}06. \]
Сумма вклада через несколько лет описывается формулой геометрической прогрессии:
\[ b_n = b_1 \cdot q^{\,n-1}, \]
где \(b_1\) — первоначальный вклад, \(q\) — коэффициент роста, \(n\) — номер года.
Через 4 года получается пятый член прогрессии, а через 6 лет — седьмой член, так как первый член соответствует начальному моменту времени.
Полученные значения округляются до целых рублей, так как денежные суммы выражаются целыми единицами.
Вернуться к содержанию учебника